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Kinetics of crystallization in a shearing colloidal suspension
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We report the kinetics of crystallization as observed in simulations of a charged colloidal suspension
under shear. We find that the imposed shear flow inhibits crystal nucleation. Crystallization was only
observed for shear rates at or below y7,=0.07 (where 7, is the time required for a particle to diffuse the
averge interparticle distance in a dilute suspension). Under the influence of these low shear rates the sus-
pension crystallizes into a single shear-aligned crystal, as opposed to the polycrystalline structure found
in the absence of shear flow. Crystal growth is found to be proportional to the effective supercooling, as
measured from the melting temperature of the shearing crystal. We conclude that, by analogy with the
case of crystallization at zero shear, the effective supercooling provides an operational measure of the

“thermodynamic” stability of the shearing crystal.

PACS number(s): 64.70.Dv, 62.20.—x, 82.70.Dd

I. INTRODUCTION

In this paper we describe the kinetics of crystallization
as observed in simulations of amorphous charged col-
loidal suspensions undergoing shear flow. That such a
process occurs in reality is indicated by experimental re-
ports [1] of the development of long-range periodic order
in shearing suspensions as the shear rate is lowered.
However, we are unaware of any quantitative studies, ei-
ther experimental or using computer simulation, of the
kinetics of this ordering process in flowing liquids. In the
following section we shall consider some of the basic
physical questions raised by crystallization under shear.
Some of these expectations are compared with the effects
of the applied shear on nucleation from the melt, as well
as the propagation of a planar crystal surface observed in
the simulated suspension.

II. THEORY

To begin, we shall need to introduce two general obser-
vations concerning the effects of an applied shear on the
stability of crystalline order in a suspension. The first is
that a crystal can sustain a substantial amount of its
three-dimensional structure while being forced to slowly
shear only if the shear gradient is normal to a particular
crystal plane (typically the closest-packed plane) and the
flow is aligned along a close-packed direction in this
plane. In the case of a body-centered cubic (bcc) struc-
ture, the appropriate plane is the (110) and the selected
direction in this plane is [111]. This is the only orienta-
tion that has been observed in light scattering studies [1]
of charged polystyrene colloids, which, at low concentra-
tions of added salt, form stable bcc crystals. For the
face-centered cubic (fcc) crystal [2] the sliding planes are
observed to be the (111) planes which move in the [111]
direction. In simulations we can alter the crystal orienta-
tion with respect to the shear flow in order to see what
will happen. The result is rapid disordering at the lowest
shear rates studied [3-6] at all orientations chosen other
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than the unique “‘easy” direction.

The second observation is that colloidal crystals, even
when properly aligned with the shear flow, will undergo a
disordering transition to the amorphous suspension as
the shear rate is increased beyond a critical value. This is
the case, for example, in the low salt suspension of poly-
styrene particles studied by Ackerson and Clark [1]. This
disordering transition has also been observed in none-
quilibrium simulations [5,6]. The physical origins of this
shear-induced disordering transition have yet to be estab-
lished. Recently, [6] we suggested a mechanism involving
the shear-induced generation of interstitial defects, which
leads to the destabilization of long-range order via a col-
lective process similar to defect-induced amorphization.
One of the motives for this present study is to explore the
possibility that the kinetics of crystallization provides a
useful way of quantifying the relative stability of the crys-
talline and amorphous steady states in the shearing sus-
pension.

Now we can consider the nucleation of a sliding crystal
from the shearing suspension. We assume that the
structural fluctuations in the suspension can be represent-
ed as a distribution of crystallites of different sizes. At
zero shear this distribution is determined by the metasta-
ble equilibrium of the supercooled liquid and by the criti-
cal nucleus size above which the cluster is unstable to
growth. In the steadily shearing suspension, the fate of a
crystallite will be influenced by the shear flow in at least
three ways. (i) A crystallite that is not “correctly” orient-
ed with the shear as described above will not be able to
shear and retain crystalline order. These clusters will ei-
ther be sheared, and hence destroyed, or they will resist
shear and rotate until they are ‘“‘correctly’” aligned, at
which point they will shear with the possibility of retain-
ing some crystalline order. (ii) A shearing crystallite will
be destroyed if the shear rate convects layers past one
another faster than the layers can grow. (iii) The nu-
cleation rate is expected to be a sensitive function of the
difference in stability of the shearing crystal structure to
that of the shearing liquid. This difference will depend on
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the shear rate.

Which of the two outcomes described in process (i) ac-
tually occurs will depend on the rotational friction ex-
perienced by a cluster. The larger the resistance to rota-
tion, the greater will be the internal stress in the cluster
due to the applied shear. Because it is true that the
smaller the cluster, the lower the rotational friction, we
shall assume that all clusters in a liquid have an ancestor
small enough to have been rotated and aligned by the
shear. The result of this is that at the point at which
crystalline fluctuations are of a critical size, they are as-
sumed to be aligned with the shear. That is, we expect
that the rate of nucleation will not be diminished com-
pared to the rate at zero shear because of the destruction
of crystallites of “incorrect” orientation.

A decrease in the nucleation rate would be expected
from the process labeled (iii). To force crystal layers to
slide over one another is to perturb the equilibrium
configuration. To the extent that equilibrium concepts
retain relevance with regard to crystalline stability in the
shearing liquid, this perturbation would be expected to
destabilize the crystal with respect to the liquid. Let us
represent this as a decrease of the effective supercooling
AT 4. We can define AT 4 operationally as the difference
at a given shear rate ¥ between the actual temperature
and the transition temperature of the shear-induced dis-
ordering. It immediately follows from this definition that
for those systems that do not exhibit shear-induced disor-
dering, AT .s=AT. At small shear rates we might hope
to approximate the effective supercooling by

AT g~AT—puy . (1)

(Please note that this simple expression is being used for
the purpose of discussing the crystallization rates only.
We have argued elsewhere [6] that the effect of an applied
shear on crystalline stability is considerably more com-
plex than such pseudoequilibrium descriptions imply.
The shear-induced disordering transition involves a range
of intermediate structures that have no analog in the
equilibrium melting transition.) If we were to indicate on
the T-y plane a ‘“‘nucleation” line below which homo-
geneous crystal nucleation achieves an observable rate,
then the perturbation expressed in Eq. (1) would appear
as indicated in Fig. 1.

The critical nucleus is identified as the smallest cluster
that is unstable with respect to growth to a bulk crystal.
In the shearing liquid one more obstacle stands in the
way of such a cluster growing to bulk size. If the planes
of a finite sized cluster are shearing past one another,
eventually they will be convected on into the surrounding
liquid and the cluster destroyed [process (ii)] unless the
crystal growth rate matches or exceeds the convection
rate. This leads us to define a critical shear rate 7, in
terms of the crystal growth rate v and g, the interlayer
spacing, as

7;crit= v/a . (2)

Only for shear rates y <y, will growth win over con-
vective disordering. While not a major consideration, it
is interesting to note that the appropriate growth rate to

6425

* . .
T Convective destruction

Shear rate

FIG. 1. Schematic representation of nucleation behavior un-
der variations in temperature and shear rate. The “nucleation
line” shows the expected decrease in nucleation due to destabili-
zation of the equilibrium structure by the applied shear. This
line is cut by the line representing the effect of “convective de-
struction” of nuclei. At low temperatures, where nucleation
occurs at many sites, a nonlinearity is expected in the convec-
tive destruction of nuclei. This is represented by the dashed
line. The shaded area is therefore the window of temperatures
and shear rates within which nucleation and growth of order
are expected to occur.

use in Eq. (2) is that of a high index surface. Growth
along the line of flow will always occur at a surface with
high step density, thanks to the convection of layers (see
Fig. 2). The crystal growth rate v would be expected to
be proportional to the effective supercooling, so that

?crit=CATeﬂ‘/a ’ (3)

with ¢ a constant. This line is also sketched in Fig. 1 [us-
ing the linear expression for AT . in Eq. (1)].

The condition specified in Eq. (3) may well be too res-
trictive. It establishes the relationship between shear rate
and growth rate such that the former will never outstrip
the latter for arbitrary periods of time. In reality, howev-
er, a crystallite only needs to grow far enough to meet
neighboring crystallites. As the distance between neigh-
boring clusters is a rapidly decreasing function of super-
cooling, we would expect the critical shear curve in Fig. 1
to exhibit a nonlinear dependence, as indicated qualita-
tively by the dashed line. The increased window for ob-
servable nucleation that this modification affords arises
from the possibility of sliding layers of neighboring clus-
ters overlapping with one another and so avoiding the de-

&‘b-

Crystallite

FIG. 2. Schematic diagram showing a crystallite undergoing
plane-over-plane sliding under shear. The result of layers slid-
ing over one another is the production of stepped high index
surfaces from which growth must occur if the cluster is not to
be destroyed by convection.
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struction experienced by an isolated crystallite. Note
that together, the nucleation line and the critical shear
line restrict the region in which crystal nucleation would
be observable. Within this window we would expect to
see the nucleation rate decrease with increasing shear
rate as a result of the decreasing effective supercooling.

This “window” of observable nucleation would be ex-
pected to differ from that shown in Fig. 1 in the case of
oscillatory flows. We have not carried out simulation
studies of the crystallization kinetics in such flows and so
shall consider them only briefly here. Let us characterize
an oscillatory shear flow by a shear rate and an amplitude
of oscillation so that as the amplitude goes to infinity, the
flow becomes a steady shear. As long as the amplitude is
greater than the particle spacing, process (i) would be the
same as for the steady flow. For amplitudes of oscillation
smaller than the size of a crystal cluster, however, we
would expect the convective destruction described in pro-
cess (ii) to be significantly reduced. Small amplitude os-
cillations would not convect crystal layers far enough
from their neighbors to result in complete disordering.
In fact, such motion may enhance growth of a larger-
than-critical cluster by generating high index surfaces (as
depicted in Fig. 2). Both experimental [7] and simulation
[8] studies indicate that layered structures can be stabi-
lized in suspensions by oscillatory shears. It is possible
that, for small enough oscillatory amplitudes, the applied
shear may be regarded as stabilizing crystalline order
rather than causing the destabilization described for
steady shears in process (iii).

Turning now to the growth of a planar interface in the
presence of a steady flow, processes (i) and (ii) become ir-
relevant (as long as we are not interested in the case in
which the shear flow is directed normal to the interface).
We would expect that result already proposed above for
the dependence of the growth rate on the applied shear
rate, i.e.,

'V=CATeﬁ‘ . (4)

At this simple level of theory we propose to make no dis-
tinction between the case in which the shear gradient is
normal to the surface and the one in which it lies in the
plane of the surface.

III. DETAILS OF THE BROWNIAN DYNAMICS
SIMULATIONS

We would like to compare the result for a simulated
shearing colloidal suspension with the predictions de-
scribed above. We chose to model charged colloidal par-
ticles suspended in aqueous salt solution. The ability to
change the range of particle interactions simply by
changing the salt concentration in the solvent has made
these systems amenable to experiment. Such systems
have been shown to form bcc, fcc, and amorphous struc-
tures at rest [9] and, as mentioned earlier, can sustain or-
der over a range of shear rates [1].

The algorithm we used to model the dynamics of col-
loidal particles under shear was the Brownian dynamics
algorithm of Ermak [10], with the addition of a shearing
term. We define the shear velocity to be in the x direc-
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tion, the shear gradient in the y direction, and the vortici-
ty in the z direction. The resulting nonequilibrium
Brownian dynamics algorithm for particle propagation in
overdampled conditions in the presence of a linear veloci-
ty field is

Ari=(7'/yicx +D0F,-/kb T)At +R1 ’ (5)

where Ar; is the change per time step in the position vec-
tor of particle i, D is the free diffusion constant, At is the
time step, y is the applied shear rate, y; is the position of
particle i along the shear gradient, e, is a unit vector in
the x direction, and F; is the net force on particle i due to
interparticle interactions. R; is the stochastic contribu-
tion to the particle displacement, which is chosen from a
Gaussian distribution of zero mean and with a variance
given by

(R;*R;)=6D,At5; . (6)

The shear flow was incorporated into the periodic
boundary conditions by using the “sliding brick” method
of Lees and Edwards [11]. A noncubic simulation cell
was used. This cell was chosen to accommodate a bcc
crystal in the preferred alignment for shearing, i.e., with
(110) planes in the xz plane and a [111] direction parallel
to the x axis. The cell geometry was based on the follow-
ing three Bravais lattice vectors:

a=a‘/2—/33(—1/3,0,2\/§/3)
2

V'3

b=a‘2‘i/—3(l,0,0) 7

c=a2£i(—1/3,—\/_2/\/§,—\/_2/3) .

2

Here a is the average distance between nearest neighbors
and is given by a =p /3. To relate the system dimen-
sions to the Cartesian axes of shear flow, shear gradient,
and vorticity, we use the following notation. As lattice
vector b is aligned with the shear flow, the number of
unit cells along this vector is called N,. The only lattice
vector with a component in the gradient direction is c.
The number of unit cells in this direction is therefore re-
ferred to as N,. Finally, the system dimensions in the
vorticity direction are determined by vector a, leading to
the number of unit cells along a being referred to as N,.
The simulation cell is therefore spanned by vectors N,a,
N,b, and N,c. Throughout this paper we refer to cell di-
mensions by using the triplet (N,,N,,N,).

The interparticle potential appropriate for interactions
between charged particles in the presence of screening
counterions is the screened Coulomb or Yukawa poten-
tial:

V(r)=Vyexp(—«lr|)/|r| . (8)

The net force on a particle, F;, is found by summing the
pairwise interactions between particles i and j for
r; <r.(i#j), where r, is the cutoff radius chosen [12]
such that «kr,>8. An increase in k, the inverse Debye
length, corresponds to an increase in the concentration of
salt in the solvent and hence increased screening of parti-
cle interactions. We chose a value of k small enough to
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allow an equilibrium bcc crystal structure but not to lead
to an interparticle potential so long ranged that
significant interaction occurred between image particles.
All calculations reported in this paper used ka =3.1.

We have used the following reduced units for length
(r*=r/a) and temperature (T*=6kzT/V,). The time
unit is related to 7, the time required for a particle to
diffuse a distance of a. 7, is given by a2/6D,. The re-
duced time step is At* =Az(7,T*). A value of Az*=0.03
is used in all calculations, ensuring that At <7,/1000
over the temperature range studied. All time is reported
as the number of reduced time steps. By combining Eq.
(7) with the expression of the reduced time step, it can be
seen that the mean squared amplitude of the stochastic
displacement is proportional to the reduced temperature,
ie.,

((R**)=T*At* . 9

While the shear rate y gives a measure of the magnitude
of the applied shear rate, a more meaningful variable is
the relative magnitude of convection and diffusion. For
this reason we express the magnitude of the shear rate as
the Deborah number, defined as De=y 7,

The reduced temperature T* establishes the magnitude
of the fluctuating displacements due to collisions between
colloidal particles and solvent molecules, modeled here
by the stochastic bath. The physical motive for identify-
ing this quantity with temperature is the proportionality
between the temperature and the self-diffusion constant
established by the Stokes-Einstein relation. In colloidal
suspensions, however, temperature will also influence the
interparticle potential directly by altering the solvent
dielectric constant, the equilibrium of the bound surface
charges or, in the case of steric stabilization, the influence
of the tethered polymer groups. This quantity, T*, is
thus not expected to translate directly to the actual tem-
perature of a suspension. Instead, the reduced tempera-
ture simply provides us with an intensive parameter by
which the system may be systematically displaced from
the equilibrium melting transition.

IV. RESULTS FOR CRYSTAL NUCLEATION
UNDER SHEAR

First, we look at crystallization from a homogeneous
suspension in the absence of shear flow. A suspension of
216 particles (at a reduced density of 1.0 and an inverse
Debye length of 3.1) was equilibrated at 7*=0.04 and
then quenched to 7*=0.010. This final temperature was
only 40% of the melting temperature T}, =0.0256 and
thus represents a substantially supercooled system. The
simulation was then run (with no applied shear) for ap-
proximately 2.0X 10° time steps, by which time it had or-
dered as indicated by the appearance of additional peaks
in the radial distribution function characteristic of a bcc
structure. The suspension showed no global crystalline
order, however, and we concluded that the final phase
was polycrystalline. At slightly smaller supercooling no
ordering of any kind was observed for runs up to
5.0X 10° time steps in duration.
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Next, we consider how this process is altered by the
imposition of a shear flow. We have examined a range of
low shear rates with Deborah numbers between 0.01 and
1.0 for the same system as described above. The times re-
quired for ordering from the melt are given in Table I.
Reflecting the origin of nucleation in rare structural fluc-
tuations, ordering times are erratic, with systems under
equivalent conditions (but different initial conditions) or-
dering in vastly different times. In Fig. 3 we present the
time dependence of the scattering intensity I;,, at the
Bragg peak for a wave vector aligned along the shear gra-
dient for a run at De=0.05, in which ordering, eventual-
ly, took place. Note the long induction time followed by
the rapid growth of order. At De=0.01 and 0.05, one
run out of four ordered in approximately 1.6X 10 time
steps while the other three did not order within 5X10°
time steps. These data suggest that the nucleation rate,
as measured as the number of nuclei per unit volume per
unit time, is decreasing with increasing shear rate, as ex-
pected from the previous discussion. We saw no nu-
cleation above a shear rate of De=0.07.

A striking observation is the nature of the crystal
phase grown in the sheared suspensions. In dramatic
contrast to the growth at zero shear, all the crystals
grown in the sheared suspensions consisted in a single
aligned crystal. This is in agreement with the observa-
tions of Ackerson and Clark [1] on aqueous suspensions
of charged particles and our expectations from above
concerning the preferential alignment of crystallites. The
intriguing feature of this result is that the lowest shear
rate we studied, De=0.01, involves a particle being con-
vected only a distance of 0.44 of the nearest neighbor
spacing past its neighbor during the crystallization run.
Yet this minute perturbation is sufficient to produce a
perfectly aligned single style. This remarkable sensitivity
is certainly consistent with the action of the shear on the
initial crystallites.

V. RESULTS FOR GROWTH UNDER SHEAR
FROM A PLANAR SURFACE

To monitor the rate of crystallization at a planar
crystal-liquid surface, the runs were carried out in a cell
of dimensions (6,14,6) with a starting configuration of
eight layers of perfect crystal oriented with the shear gra-

TABLE I. Ordering times from the melt at 7* =0.010. Note
that at low shear rates only a fraction of runs ordered within the
5X 10° time steps and no ordering was observed for De > 0.07.

Number of runs

Deborah Number ordered Ordering time
number of runs (within 5X10° time steps) (time steps)
0 3 3 (1.7£0.27) X 10°
0.01 4 1 1.6Xx10°
0.05 4 1 1.6X10°
0.07 2 1 2.9%10°
0.1 1 0
0.2 1 0
1 1 0
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FIG. 3. Time dependence of I,,, the scattered intensity for
Bragg scattering from wave vectors aligned with the shear gra-
dient, through the ordering transition at T*=0.010 and
De=0.05.

dient normal to the (110) plane and the flow direction
parallel to the [111] direction (see Fig. 4). The surfaces of
the crystalline slab were (110) planes.

Growth was monitored through the time development
of the Bragg peak, as in the previous nucleation study. A
typical example of scattering intensity versus time is
shown in Fig. 5, this one for growth at 7*=0.021 and
De=0.05. The large increase in intensity indicates crys-
tallization. The average rate of this increase is reported
as the growth rate. (Note that only those runs in which
the system ordered are used in this average. As discussed
elsewhere [6], the fraction of runs that ordered at a given
shear rate is a sensitive function of the shear rate.) The
intensity exhibited considerable fluctuations in time. In
some runs it stopped midway between the initial condi-
tion and complete order for an extended period before
continuing to order. A few runs even displayed intense
disordering periods during the overall crystallization.
There appears to be a region of the T-y plane in which
steady-state phases of disorder and order both exhibit
long-lived stability. We have not observed stable coex-
istence of the two phases in our small simulated systems.

Many of the runs began with a transient decrease in
the Bragg scattering before the increase due to crystalli-
zation. This feature appears to result from the rapid re-
laxation of the perfect crystal structure used in the initial
configuration. Finally, we note that there appears to be
an induction time before growth commences. This may

FIG. 4. Projection along the flow direction of a starting
configuration consisting of eight bce (110) layers adjoining an
amorphous region.
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FIG. 5. Time dependence of Bragg scattering aligned with
the shear gradient, I, for a system at De=0.05 and
T*=0.021.

be an artifact of the unrelaxed initial state. While it is
difficult to see how a perfect crystal would impede crystal
growth, it is possible that it is the unrelaxed initial
crystal-liquid interface that interferes with crystalliza-
tion.

The growth rates at T*=0.021 are plotted as a func-
tion of Deborah number in Fig. 6. They exhibit a distinct
minimum at De~0.05. In the discussion of the preced-
ing section we suggested that the growth rate would be
proportional to the effective supercooling. The disorder-
ing line in the T-y plane for the simulated system is
presented in Fig. 7. (This diagram is discussed in detail
in Ref. [6].) AT 4 for T*=0.021, which is the tempera-
ture difference between the solid and dashed lines in Fig.
7, exhibits a similar nonmonotonic dependence on De to
that shown by the shear rate, including a minimum at
De=0.05. The stabilization of ordered structures in
simulations at high shear rates (and hence the origin of
the minimum in AT.;) has been the subject of some de-

0.07

0.06 )
=~ %] |
'

& 005 x
w
¢ .
£ oo0a
)
3
® 003 {
(-1 L
.= :
5 0.02 E
B !
S oot ¢
0 ‘ } —t—

0 1 2 3 4 5
Deborah number
FIG. 6. Ordering rate for ordering from bcc (110) planes vs
Deborah number at T*=0.021. The rate of propagation of or-
der is seen to decrease on application of a shear, reaching a

minimum at De~0.5, and then increases with further increases
in shear rate.
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FIG. 7. Nonequilibrium phase diagram over the T*-De
space for systems at p=1 and xka =3.1. Filled circles represent
phase points where at least one run using a starting
configuration of coexisting order and disorder was observed to
order. Open circles represent points where all such runs disor-
dered. The dashed line at T*=0.021 gives the phase cut used
when calculating the rates of ordering presented in Fig. 6. The
sold line is a line of best fit separating order and disorder. The
effective supercooling, AT, of points along the phase cut at
T*=0.021 is the difference in T* between the solid and dashed
lines.

bate [13-15]. Regardless of whether this feature is a
computational artifact or not, our results strongly sup-
port the proposal that the growth rate (as simulated) and
the effective supercooling (as simulated) are strongly
correlated.

We can explore this correlation further. Figure 8 plots
the rate of ordering at a particular Deborah number
against the effective supercooling at that Deborah num-
ber. The data appear to divide themselves naturally into
two regimes, each characterized by an approximately
linear dependence of growth rate on AT 4. The dividing
line occurs at the Deborah number of De~0.05, the posi-

@®De <05
ODe>0.5

] 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Ordering Rate

FIG. 8. The ordering rate vs the effective supercooling for a
range of De. Open circles are used for rates and supercoolings
at De=0.5 (i.e., for Deborah numbers greater than the
minimum in the order-disorder phase boundary in Fig. 7), and
closed circles represent points where De <0.5. Lines of best fit
are drawn through each set of points.
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tion of the minima in growth rate (Fig. 6) and effective
supercooling (Fig. 7). The filled circles in Fig. 8 represent
data taken from the supercooled suspension at low shear
rates, i.e., the region characterized by shear-induced dis-
ordering. A straight line with a slope of ~58 provides a
reasonable fit to these points. For shear rates above the
minimum in the effective supercooling (the open circles in
Fig. 8), we find that the growth rates versus AT 4 also lie
on a straight line, but with a slope =19, roughly one
third of the value found in the low shear rate regime. We
note that the stability of the ordered phase in this high
De region must arise from quite different physical origins
than at low De. Increasing the shear rate for De > 0.05
leads to increased stability of order, i.e., shear-induced or-
dering, as supposed to the shear-induced disordering seen
for De <0.05. The fact that a linear relationship between
growth rate and effective supercooling appears to be a
useful representation of the data provides some support
for Eq. (4). It also adds weight to the suggestion that
pseudoequilibrium ideas, incorporating the effective su-
percooling, may be useful in explaining the stability of
structure in nonequilibrium steady states. We shall return
to this point in the following section.

VI. CONCLUSIONS

In this paper we have presented a preliminary study of
crystallization in a dilute charged suspension undergoing
shear as simulated by a nonequilibrium Brownian dynam-
ics algorithm. We have observed that nucleation is
suppressed by relatively small shear rates. Crystallization
did occur at the smallest shear rates we could use, pro-
ducing a single crystal aligned in the shear flow instead of
the polycrystalline order found at zero shear. We note
that in real suspensions, crystallization may take place at
the walls rather than via homogeneous nucleation. This
would expand the range of shear rates over which these
shear-aligned crystals can be grown beyond that which
we see in simulation.

The major result of the paper is the demonstration that
the growth rate of a shearing crystal is approximately
proportional to the effective supercooling. The different
proportionality constants in the low and high shear rate
regimes reflect the very different relationships between
the shear flow and order in these two domains under
simulation. The qualitative similarity between the depen-
dence of growth rate and supercooling at zero shear and
that observed in the shearing suspension between the
growth rate and AT 4 points to some similarities in the
underlying nature of the disordering transitions. It
would be difficult to reconcile this linear dependence with
a model of shear-induced disordering based purely on
mechanical disruption. Such a process would depend on
the elastic moduli of the crystal, a quantity that does not
vanish linearly with the supercooling. On the other
hand, we have reported elsewhere [6] the dependence of
the position of the order-disorder transition on system
size. The only explanation of this dependence to date in-
volves the coupling of the shear flow to long wavelength
fluctuations. So we are left, for the moment, with the fol-
lowing picture. These crystallization kinetics studies are
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consistent with the stability of the shearing crystal rela-
tive to the disordered suspension being described by some
sort of ‘“thermodynamic” potential. (“Thermodynamic”
is used here in the loose sense that the potential difference
between the two phases is a function of only a small set of
variables, which includes the effective supercooling.) The
observed size dependence, however, requires this “ther-
modynamic” potential to depend on long wavelength
fluctuations in a manner quite different from that found
at equilibrium.

This question of the nature of collective stabilization of
order away from equilibrium remains an important chal-
lenge. Models such as the defect-mediated disordering
model [6] provide us with explicit examples of how the
enhanced role of long wavelength fluctuations in shearing
systems can be incorporated into the familiar formalism
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of order parameter theories. Recent work by Evans and
Baranyai [16] and Peric and Morriss [17] hold out hope
of establishing the existence of variational principles that
govern steady states far from equilibrium. We believe
that experimental and computer simulation studies of
kinetics of structural phase transitions under shear will
provide a valuable body of data to test and direct the de-
velopment of these ideas.
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* . .
T Convective destruction

Shear rate

FIG. 1. Schematic representation of nucleation behavior un-
der variations in temperature and shear rate. The “nucleation
line” shows the expected decrease in nucleation due to destabili-
zation of the equilibrium structure by the applied shear. This
line is cut by the line representing the effect of “convective de-
struction” of nuclei. At low temperatures, where nucleation
occurs at many sites, a nonlinearity is expected in the convec-
tive destruction of nuclei. This is represented by the dashed
line. The shaded area is therefore the window of temperatures
and shear rates within which nucleation and growth of order
are expected to occur.



FIG. 2. Schematic diagram showing a crystallite undergoing
plane-over-plane sliding under shear. The result of layers slid-
ing over one another is the production of stepped high index
surfaces from which growth must occur if the cluster is not to
be destroyed by convection.



